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Gauge and B icklund Transformations for the 
Generalized Sine-Gordon Equation and 
Its 7/-Dependent Modified Equation 
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We study the generalized sine-Gordon hierarchy and its associated q-dependent  
modified sine-Gordon hierarchy. Two B/icklund transformations for these two 
families are constructed. One of  them is a generalization of  the B/icklund 
transformations of  Wadati et al. and the other one is new. Gauge transformations 
of  a relevant AKNS system are employed to reduce the integration of  these 
equations via the B/icklund transformations to quadratures. Three generations 
of  explicit solutions of  the sine-Gordon equation are presented. 

1. INTRODUCTION 

In a previous work (Zheng and Chan, 1988) we developed a gauge- 
B/icklund transformation technique for constructing families of  solutions 
to the hierarchy of the Korteweg-de Vries equation (KdVE). This method 
was extended to the case for the hierarchy of  the modified KdVE (Zheng 
and Chan, in press). In this paper we extend the method further to include 
the generalized sine-Gordon hierarchy: 

zx, = { ( c o s  z l c o s  z + s i n  z l s i n  z ) I } m s i n  z, m >>- I (1.1) 

zx, = sin z, m = 0 (1.2) 

in which I is the integration operator. 
This hierarchy was introduced in Sasaki and Bullough (1981), where 

polynomial and nonlocal conserved Hamiltonian densities were deduced 
from a geometric approach. Here we derive an expression for the equation 
of  motion for an arbitrary member of  the generalized sine-Gordon equation 
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(GSGE) by a different method which leads us to the introduction of an 
associated family of nonlinear evolution equations: the ,/-dependent 
modified GSGE 07-mGSGE). The solutions of the two hierarchies are in 
one-to-one correspondence and the situation is analogous to the KdVE and 
~/-mKdVE pair. 

The paper is organized as follows. In Section 2 the GSGE is derived, 
and in Section 3 a Biicklund transformation (BT) for it is established. In 
order to implement this BT to obtain explicit solutions, we consider in 
Section 4 gauge transformations (GT) of the relevant AKNS system in the 
spirit of our previous work (Zheng and Chan, 1988, and in press). Section 
5 introduces the new ~/-mGSGE and its BT. Finally, in Section 6 we 
summarize our construction procedures, and three generations of solutions 
for the sine-Gordon equation are presented to illustrate how the integration 
of this equation is reduced to quadratures. 

2. G E N E R A L I Z E D  SINE-GORDON EQUATION 

It is well known that the SGE (1.2), as a condition of integrability, can 
be derived from the following AKNS system (Ablowitz and Segur, 1981): 

d ~ = ~ q  ~ (2.1) 

where W is a column vector function of x and t, 

,22) 

and 

f~ = P dx + Q dt (2.3) 

(~7 q )  (2.4) 
P =  - q  -~7 

~7 is a real parameter, independent of x and t (2.5) 

q is a real function of x and t (2.6) 

A is a functional of q (2.8) 

Ax 1 1 [Ax\ 
B=~qq+~ qA +'-~ ~ q ) x  (2.9) 

ax 1 qA - I  [ I - I  
C = 2-'-q-~ 4rl \ q /x  (2.10) 
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First we cite some useful results about this system (Zheng and Chart, to 
appear). 

(C1) A necessary and sufficient condition for the integrability of the 
AKNS system (2.1) is that A and q satisfy the following equation: 

q, +'0 A~_q In (qA)x -~-~ \ q / x x  = 0 (2.11) 

(C2) There exists a complex gauge 

GI =( iq- -i q) (2.12) 

which carries the following transformation: 

GI: ~- ->~= GI~  (2.13) 

with 

\ ~02/ \ ~bl + i~b 2 ] 

and ~ satisfies a complex AKNS system: 

~C~ + .7C �9 dt 

(2.14) 

where 

(2.15) 

u = iqx + q2 (the complex Muira transformation) (2.16) 

~ = _  1 RA (2.17) 
2~q 

O R = iD+2q, D = - -  (2.18) 
0x 

(C3) A necessary and sufficient condition for the integrability of the 
AKNS system (2.15) is that (7 and u satisfy the following equation: 

1,4 t -F" 1Cxxx -~- 2(/~ - n2)Cx -[- uxC = 0 (2.19) 

(C4) Under the condition that u and q satisfy (2.16), the expressions 
on the left-hand side of equations (2.11) and (2.19) possess the following 
relationship: 

u,+�89 " )Cx+uxC 
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This identity establishes a relation between the two equations (2.11) and 
(2.19). 

Now we choose A in (2.11) to be a polynomial of  r/-l: 

A= ~ Aj~ -2(n-j)-1 (2.21) 
j=o 

Substituting (2.21) into (2.11) and equating to zero all of  the coefficients 
of  the power of  7/-x, we get 

[ l ( -A-~)x+qAo]x- -0  (2.22, 

1 [ Aj x'~ "] Aj- l,x, 
4 \ q /  ~ ' | x + q A i | x  = q j = l , 2 , . . . , n  (2.23) 

Denote 

q, + An,x = 0 (2.24) 
q 

G = D(1D+ qD-lq) (2.25) 

Then (2.23) can be rewritten as 

Gq-~DA~ = q-~DAj_I, j = 1, 2 , . . . ,  n (2.26) 

Using the inverse operator G -~ of  G in (2.25), we get the following recursion 
formula: 

Aj = D-lqG-lq-1DAj_I,  j = 1, 2 , . . . ,  n (2.27) 

Thus, to each solution Ao of  equation (2.22), we have 

Aj = D-~qG-Jq-IDAo, j = 1, 2 , . . . ,  n (2.28) 

Taking j = n in (2.28) and substituting it into (2.24), we get the following 
evolution equation: 

qt + G-"q-lDAo = 0, n = 0, 1, 2 . . . .  (2.29) 

This is a set of  integrodifferential equations, since 6 -1 involves the integral 
operator. To obtain the functional Ao, we introduce a new function 

z = 2 f q dx, or q = �89 (2.30) 
d 

and assume that 

A o = A o ( 2 f q d x ) = A o ( z )  (2.31) 
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By (2.22), (2.30), and (2.31), we have 

Ao = �88 COS z 

Substituting (2.30) and (2.32) into (2.28) and (2.29) we get 

Aj = -]DT~G -j sin z, j = 1, 2 , . . . ,  n 

zxt - G-"  sin z = 0, n = 0, 1, 2 , . . .  

where 

1079 

(2.32) 

(2.33) 

(2.34) 

G = 1Dzx(Dz + D~ -1) (2.35) 

Dz I f dz (2.36) 
0 

Dz Oz' 

G -1 = ( c o s  z D z  I c o s  z + sin zDj  1 sin z )D;  1 

(Sasaki and Bullough, 1981). 
For n = 0, (2.34) reduces to the SGE (1.2); therefore we call (2.34) the 

generalized sine-Gordon equation (GSGE). 
Inserting (2.33) into (2.21), (2.9), and (2.10) gives 

1 n 
A = --4j~=o D;1G-J sin z--2(n--j)--X (2.37) 

1 " 
B = -4j=~o G-~ sin z - 2 ( , - j ) - ,  

1 " 
--2j~=o D-1G-J+~ sin z ~7 -2("-j+l) (2.38) 

1 " 
C = -4j=~o G-j  sin z~  -2("-:)-1 

1 n 

+2j~=o D-'G-J+' sin z ,/-2(,-j+l) (2.39) 

By the above results, we have the following. 

Theorem 1. Under the condition that q and z be connected by (2.30) 
and A, B, and C take the values (2.37)-(2.39), a necessary and sufficient 
condition for the integrability of the AKNS system (2.1) is that z satisfies 
the GSGE (2.34). 
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3. BACKLUND TRANSFORMATION FOR THE GSGE 

Wadati et al. (1975) constructed a BT for the SGE (1.2) which reads 

z' = z + 4 tan -1 ~2 (3.1) 

where ~1 and ~2 are solutions of the AKNS system (2.1)-(2.10) correspond- 
ing to the solution z of  the SGE (1.1). We now show that (3.1) is also valid 
for the GSGE (2.34). 

Substituting (2.28) into (2.21) gives 

A =  ~ D- lqG-Jq- lDAor1-2("- j ) -1  (3.2) 
j=o  

Denote 

F = �88 u +�89 -1 (3.3) 

It is easy to check that the commutative relations 

D q - I R  = R q - l D  (3.4) 

R G  = F R  or R G  -1 = F - 1 R  (3.5) 

hold. Substituting (3.2) into (2.17) and using (3.4) and (3.5), we have 

C= ~ D-1F-JDCoc] -2("-J)-2 (3.6) 
j=o  

where, by (2.32) 

Co = - � 89  RAo = -�88 e -iz (3.7) 

By virtue of  (2.22), (2.25), (3.5), and (3.4), we find that the Co in (3.7) 
satisfies the following equation: 

FDCo = 0 (3.8) 

Now inserting (3.6) into (2.19) and using (3.8), we obtain the following 
equation: 

u, - 2 F - n D C o  = 0 (3.9) 

By (2.30) and (2.16), z is in fact a functional of  u, and so is Co by (3.7). 
Thus, by (3.3), we have the following result. 

Theorem 2. A necessary and sufficient condition for the integrability 
of  the AKNS system (2.15) with t~ in (3.6) is that the function u satisfies 
equation (3.9). 



Generalized Sine-Gordon Equation 1 0 8 1  

Referring to (2.19), (3.9), (2.11), (2.34), and (2.20), we get the following 
equality: 

u, - 2 F - " D C o  = R(zx t  - G - "  sin z) (3.10) 

Note that R is a complex operator; the equality (3.10) implies the following 
result. 

Theorem 3. Under the condition that u and z are connected by (2.16) 
and (2.30), a necessary and sufficient condition of u satisfying equation 
(3.9) is that z satisfy equation (2.34). 

Now, assume that z is a known solution of the GSGE (2.34), and @1 
and @2 are the corresponding solutions of the AKNS system (2.1)-(2.7) 
with q, A, B, and C given in (2.30) and (2.37)-(2.39). Then, by (2.16), 
(2.17), and (2.14), we get u, C, and qb; they satisfy the AKNS system (2.15), 
or in component form 

~lx = r/~Pl + u~p2 (3.11) 

~2x = -qh  - r/~2 (3.12) 

~ l t = - ( 1 f x - - ~ - ~ f ) ~ l - ( 1 f x x + T ] f x + u C ) ~ 2  (3.13) 

q~2, = C~ol + (~Cx + ~?C)~o~ (3.14) 

Define 

~l ~2x 
v . . . .  ~7 = - -  (3.15) 

~2 ~2 

By (3.15) and (3.11)-(3.14), we have 

u = 7/2- vx - v z (3.16) 
1 A ,,~ 

v, = (sC,, - v C ) x  (3.17) 

Denote 

Then (3.16) gives 

R + =  D - 2 v  (3.18) 

R -  = - D - 2 v  (3.19) 

ux = R - v x  (3.20) 

u, = R - v ,  (3.21) 

Substituting (3.6) into (3.17) and using (3.18), we get 

v, = �89 ~ D R + D - ' F - J D C o r 1 - 2 ( ' - j ) - 2  (3.22) 
j=O 
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From (3.9) and (3.21) we have 

DCo = �89 (3.23) 

Substituting (3.23) into (3.22) to eliminate DCo, we obtain 

1 
v, =-~ (j=~o DR+ D-I F"-JR-rl-2("-J)-2) v, (3.24) 

Denote 

Then we have 

S = � 8 8  2 + .q2 _ ,02 --  v~,D-i v (3.25) 

FR-  = R - S  (3.26) 

DR+D-~R - = -4 (S  - ~/2) (3.27) 

Applying (3.25)-(3.27) to (3.24), we obtain an evolution equation in compact 
form: 

S"+~v, = 0 (3.28) 

Thus we arrive at the following result. 

Theorem 4. Let u be a solution of equation (3.9), and ~ and q~2 be 
the corresponding solutions of (3.11)-(3.14); then the function v defined 
by (3.15) is a solution of equation (3.28). 

Using the relation between u and v of (3.16) and by direct calculation, 
one finds that equations (2.19) and (3.17) are connected by the following 
relation: 

u,+�89189 (3.29) 

This implies the following equality between equations (3.9) and (3.28): 

u, - 2F-"DCo = R-(  S"+l vt) (3.30) 

We state this result in a theorem. 

Theorem 5. Whenever v is a solution of equation (3.28), the function 
u determined by v in (3.16) is a solution of equation (3.9). 

Note that the operator S defined in (3.25) is even with respect to v. 
Therefore, equation (3.28) is odd with respect to v. Thus, equation (3.28) 
possesses with every solution v another solution -v .  But then, by substitut- 
ing - v  into (3.16) and by Theorem 3, we obtain another solution u' of 
equation (3.9): 

U ' =  "172"~Dx--l) 2 (3.31) 

Subtracting (3.6) from (3.31), we get 

u '=  u +2vx (3.32) 
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This is a BT for equation (3.9). According to Theorem 3, we can expect 
that it contains a new solution of equation (2.34), provide the right-hand 
side of (3.32) possesses the form of a complex Miura transformation (2.16). 
We want to show indeed this is the case. 

Denote 

iq'~ + q* = u'= u + 2vx (3.33) 

where q' and q* are two real functions. One needs to show that the following 
equality holds: 

q. = (q,)2 (3.34) 

Substituting the complex function q~2 in (2.14) into (3.15) and then (2.16) 
and (3.15) into (3.33), we have 

iq~ + q* = iqx + q2 + 2[ln(62 + 622)'/2 + i tan-l ~ ] x x  

Equating the imaginary part and the real part of the two 
equality (3.35), respectively, gives 

q '=  q + 2 ( t a n - '  ~2)x (3.36) 

q* = q2+2[ln(62+ 622)'/2]xx (3.37) 

Using (2.1) and (2.4), we find that (3.36) and (3.37) are simplified to 

4~76, 62 
q ' = - q  62 + 62 (3.38) 

, 4 r l 6 1 6 2 " \  2 
q*= q-t- '~'  + 62) (3.39) 

(3.38) and (3.39) indicate that equality (3.34) holds. Therefore (3.33) can 
be rewritten in the following form of a complex Miura transformation: 

u'= iq" + q,2 (3.40) 

where q' is the function defined in (3.36). Thus, by Theorem 3, the function 

z '=2  f q 'dx  (3.41) 

is a solution of the GSGE (2.34). Substituting (2.30) into (3.36) and then 
(3.36) into (3.41), we get (3.1). This means that (3.1) is a BT for the GSGE 
(2.34). We state this in the following result. 

Theorem 6. Assume that z is a solution of the GSGE (2.34) and 6, 
and 62 are the corresponding solutions of the AKNS system (2.1)-(2.7) 

(3.35) 

sides of 
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with q, A, B, and C given in (2.30) and (2.37)-(2.39); then the function z' 
defined in (3.1) is a new solution of the GSGE (2.34), that is, (3.1) is a BT 
for the GSGE (2.34). 

4. G A U G E  T R A N S F O R M A T I O N S  FOR A K N S  S Y S T E M S  

The application of the BT (3.1) for finding new solution of the GSGE 
(2.34) requires the solutions ~1 and ~b2 of the AKNS system (2.1). In this 
section, we introduce an easy method to obtain a new solution of (2.1) from 
a known solution, that is, the gauge transformation (GT) method for the 
AKNS system (2.1). 

To the solution z' in (3.1) of the GSGE (2.34), by Theorem 1, there is 
a corresponding integrable AKNS system 

d ~ '  = l l ' ~ '  (4.1) 

where ~ '  is a column vector function of x and t, 

* ' =  ( ~  (4.2) 

and 

~' = P' dx + Q' dt (4.3) 

P'=(:q '  q'~l) (4.4) 

77 kept the same as (2.5) (4.5) 
q , _ l  , - ~zx (4.6) 

o:(A 
C' - A '  (4.7) 

A'= -�88 ~ D~IG -j sin z' ~7 -2~"-j)-1 (4.8) 
j=o 

B ' =  -�88 ~ G -j sin z' ~7 -2~n-:)-1 
j=o 

-�89 ~. D-1G -j+l sin z' ~7 -2~"-j§ (4.9) 
j=o 

C ' =  -~  ~ G -j sin z' 71-2~-j)-l 
j=o 

+�89 Y. D-1G -j+l sin z' r/-2~"-j+1) (4.10) 
j=o 
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Referring to (2.13)-(2.19), there exists a complex GT 

G3: ~tt'-") dP'= G3alf 

with 

(4.11) 

and 

G3=( iq'-2~l -/q') (4.12) 

~,={~]=(-2BO~-qtb~+iqq/~] (4.13) 

such that ~ '  satisfies the following complex AKNS system: 

=(:, L)o x 
[ 2,-.\ nC' -~,-.=- nCx- u~' +\ C' lp,,_a_ ^ ) d~' dt (4.14) 

~,-. x -  7/C' 

where u' is a solution of equation (3.9) defined in (3.31) or (3.32), and C' 
is connected to q' and A' as follows: 

~,= 1 R, A, ( R,= i O__~-+ 2q,~ (4.15) 
2r/q' \ ox / 

Now we have two AKNS systems (2.15) and (4.14). In Zheng and 
Chan (1988) we point out that these two AKNS systems possess a GT under 
the condition that the function v defined in (3.15) satisfies an odd evolution 
equation. In the present case, this condition is also satisfied, namely, 
equation (3.28). Therefore, we can apply those results to (2.15) and (4.14). 
We cite them in the following. 

There exists a GT 

G2: qb->d~'= G2qb (4.16) 

which transforms (2.15) into (4.14), where G2 is a 2•  matrix as follows: 

G 2 = ~ ( a + ( ~  v)c (71+v)a-b+O72-v2)c-(71-v)d)_(71+v)c+d (4.17, 

The notations in (4.17) have the following meanings, r/ and v have been 
defined in (2.5) and (3.15). Denote 

0 = ~p2(Xo, t) (4.18) 
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Then, 

where 

/3 = q~~ exp ( Ix :  
o 

I; ~= ~2 dx 
o 

I; ~'= 3 -2 dx 
o 

v d x )  (4.19) 

(4.20) 

(4.21) 

a = fl4(ao - bo/~') (4.22) 

b = boil 2 (4.23) 

c =/32(ao/~ - bo/~/~' + Co- do/~) (4.24) 

d = bo/~ + do (4.25) 

ao = al + bl,4 (4.26) 

bo = bl (4.27) 

Co = - a ~ A ' -  b l ~ ' +  c1+ dlA (4.28) 

do = -b~,4 '+  dl (4.29) 

I' A _ _  0 - 2  ^ - (~2) C[u(xo ,  t), t] dt (4.30) 
to 

I' A r  0 2 "  t (q~2) C[u (Xo, t), t] dt (4.31) 
o 

and a~, b~, Cl, and d~ are some arbitrary constants satisfying the following 
condition: 

aldl - blcl = 1 (4.32) 

Let 

G = G31G2G1 (4.33) 

where G1, (32, and G3 are defined in (2.12), (4.17), and (4.12), respectively. 
Thus, by (2.13), (4.16), and (4.11), (4.33) is a GT 

G: ~ ' =  G ~  (4.34) 

which transforms the AKNS systems (2.1) into (4.1). 
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5. T/-DEPENDENT MODIFIED GSGE AND ITS 
BACKLUND TRANSFORMATION 

We n o w  app ly  the G T  (4.34) to derive a t r ans fo rma t ion  for  the quant i ty  
~2/~bl in the  BT (3.1). 

Deno t e  

w = ~b2/~/1, w ' =  ~b~/~b~ (5.1) 

Then  the BT (3.1) can be expressed  in te rms of  w: 

z '  = z + 4 tan -1 w (5.2) 

Using (4.13), (4.16), (4.17), (3.15), (4.19), and  (2.14), we have  

, 1 
g,~ + ig4 = ,p~ = ~ { -  c~,, - [ ( n  + v)c - d],p~} 

+d] L-C;-(,,+v)c 
. . i  

= ~ 7 ' [ c ( n  + v ) - ( n  + v)c+ d] 

= I~=l-~(~,~ - i~2)d (5.3) 

Let /z and  t, be  the real and  imaginary  parts  o f  the complex  funct ion  d 
def ined in (4.25), respectively:  

d = / z  + iv (5.4) 

Subst i tut ing (5.4) into (5.3), we get 

~b~ + i6~ = 1~2[-2[(~'1/z + 62 ~') + i(~b~ ~, - ~b2/z) ] (5.5) 

D eno t e  

= p / t z  (5.6) 

Then  by  (5.1), (5.5), and  (5.6), we obta in  

~ p -  ~P2~z ~ - w 
w' = - -  - - -  (5.7) 

(5.7) is the t r ans fo rma t ion  fo rmula  for  the funct ion w defined in (5.1). 
The  funct ion  w is in fact  a solut ion o f  ano the r  evolut ion equat ion.  We 

now derive this equat ion.  Tak ing  the der ivat ive with respect  to x in the first 
equal i ty  o f  (5.1) and  using (2.1)-(2.7),  we get 

wx = -2~7w - q(1 + w 2) (5.8) 

Solving for  q f rom (5.8) gives 

q = - ( w x  + 27/w)/(1 + w:) (5.9) 
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Again taking the derivative with respect to t in the first equality of  (5.1) 
and using (2.1)-(2.7), we get 

w, = - 2 A w  - Bw 2 + C (5.10) 

Substituting (2.37)-(2.39) into (5.10) and using (2.34) and (2.30) gives 

wt =�89 ~ [ (4wO- lq+ w 2 -  1)7/+2(w2+ 1 ) D- ' G]  
j=o 

x G"-J*/-2("-J+~)qt (5.11) 

where the function q by (5.9), is a functional of w. Therefore (5.11) is a 
nonlinear evolution equation about w with */ as a parameter, and (5.7) is 
a BT for it. We call (5.11) the */-dependent modified GSGE (*/-mGSGE). 
Note that when n = 0, (2.34), (2.30), and (2.25) imply 

Gq, =0 (5.12) 

Therefore, for n = 0, (5.11) together with (5.12) gives 

w, = �89 4wD-l  q + w 2 -  1)*/-lq, (5.13) 

The right-hand side of this equation can be explicitly expressed in terms 
of  w. By (2.30) and (1.2) we have 

Using the identities 

w, = -�88 cos z+(1  - w 2) sin z] (5.14) 

2w = (1 + w 2) sin 2(tan -1 w) (5.15) 

1 - w 2 = (1 + w 2) cos 2(tan -1 w) (5.16) 

we find that (5.14) becomes 

wt = -11'/-1(1 q- w 2) sin(z +2 tan -1 w) (5.17) 

On the other hand, (2.30) and (5.9) give 

z = - 2 t a n - l w - 4 * /  f l-~w2dX (5.18) 

Then, by substituting (5.18) into (5.17), we get the final form of the 7/- 
mGSGE (5.11) for n = 0  as follows: 

w, =1~7-~(1 + w 2) sin 4 , / [  w dx (5.19) 
l + w  2 d 
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6. S U M M A R Y  A N D  EXAMPLE 

By the BTs (5.2) and (5.7) and the GT  (4.34) we can now start from 
a known solution zl of  the GSGE (2.34) to obtain a hierarchy of  solutions 
of  that equation, 

zl,z2,z3,..., Zk,... (6.1) 

a hierarchy of  solutions of  the corresponding AKNS system (2.1), 

~1 ,  ~2 ,  aP3, �9 �9 �9 ~k,  �9 �9 �9 (6.2) 

and a hierarchy of  solutions of  the , / -mGSGE (5.11), 

wl, w2, w 3 , . . . ,  wk, . . .  (6.3) 

without solving any differential equation except for ~1 in the following 
manner: 

Z1 ~ Z 2 > Z 3 ~ Z 4 ) 

!l/ fW"7!/W~!3~W/~ (6.4) 

Example. We now use the above results to obtain solutions of  the 
GSGE (2.34) for n = 0, that is, the SGE (1.2): 

zx, = sin z (6.5) 

from a known solution up to the third generation. 
Put n = 0 in (2.37)-(2.39); we have 

A = 177--1 COS Z (6.6) 

B = -�88 -1 sin z (6.7) 

C = - ~ 7  -1 sin z (6.8) 

Substituting (2.30) and (6.6)-(6.8) into (2.1)-(2.7), we get the corresponding 
AKNS system, 

( ~7 �89 , / ~ r / - X c o s z  - ~ 7 / - t s i n z ~ ,  
d~=-�89 ax-vk-�88 �88 -mcosz ] dt (6.9) 

Equation (6.5) possesses a trivial solution 

zl = 2m~- (6.10) 

where m is an arbitrary integer. Substituting (6.10) into (6.9), we have 

(1 ~ 01) 1 d *  = * dE, ~:= 7/x +T-- t (6.11) 
4~7 
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Solving (6.11), we get the first generation of  solution of  the AKNS system 
(6.9), 

xIr = (Oe e 0 e ) * o  (6.12) 

where ~o  is a constant column vector. Taking 

*o(i)  ,6., 
then (6.12) gives 

~ =  q12 e -~ (6.14) 

Substituting (6.14) into (5.1), we get 

02 Wl = - - =  e -2~ (6.15) 

This is the first generation of  solutions of  the ~7-mSGE (5.19). Now, by the 
BT (5.2) of  the GSGE (2.34) and (6.15), we get the second generation of  
solutions of  (2.34), 

z2 = 2 m~- + 4 tan -1 exp( -2~)  (6.16) 

To obtain the subsequent generation of solutions, we use formula (5.7). 
We must calculate the ~ first, or by (5.6) and (5.4), we have to calculate 
the complex function d defined in (4.25). By (4.25), (4.27), and (4.29) we 
have 

d = b l ( B - A ' ) + d ~  (6.17) 

Referring to (4.20), (4.19), (4.18), (3.15), and (2.14), we get 

B = (~l+ i~2) 2 a x  (6.18t 
0 

Inserting (6.14) into (6.18) gives 

/~ = ~ -l(cosh 2~:- cosh 2~o) + 2 i ( x  - xo) (6.19) 

where 

r = ~TXo + �88 ~ t (6.20/ 

The function ,4' in (6.17) is defined by (4.31). By (4.15), (3.41), and 
(6.6), we have 

C[u'(xo, t), t] = (~'(x = Xo) = - i t / - 2  exp(-iz2o) (6.211 
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where Z2o is the value of  function (6.16) at the point Xo. Substituting (6.12) 
into (4.31) and using (4.18), after simplification, we get 

A ' =  -~7-1[cosh 2~o-  cosh 2~oo- 2 i (~o-  ~oo)] (6.22) 

where 

~00 = nX0 + 117 -1 t0 (6.23) 

Applying (6.19) and (6.22) to (6.17) gives 

d = bl~-~{cosh 2~:-cosh 2~oo+2i[rl(x -Xo) -�88 - to)]}+ dl (6.24) 

We choose the constants bl and dl to satisfy the relation 

d l =  blr/-1 cosh 2s%o (6.25) 

and make the corresponding choice in (4.32) simultaneously for al and Cl. 
Thus, by (6.25), (6.24), (5.4), and (5.6), we obtain 

_ 2[ r I (x - Xo) - ~r/-l(t - to)] (6.26) 
cosh 2~: 

Note that (5.7) can be rewritten in the following equivalent form: 

w' = tan(tan -~ ~ - t a n  -~ w) (6.27) 

Substituting (6.15) and (6.26) into (6.27), we get the second generation of  
solutions for the ~/-mSGE (5.19), 

w2 = tan{tan- i  2[ rl( X - Xo) - l  rl-~( t - to)]  } 
cosh 2~ tan -1 exp(-2~)  (6.28) 

Applying (6.28) to (5.2), we arrive at the desired third generation of  solutions 
of  the SGE (6.5), 

z3 = 2mlr + 4 tan -~ 2[ ~7 (x - Xo) - �88 - to)] (6.29) 
cosh 2~ 
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